log-e-audioc/daisy/scope/scope.cpp

202 lines
4.6 KiB
C++

#include "daisy_seed.h"
#include "daisysp.h"
#include "scope.hpp"
#include "osclsk.hpp"
using namespace daisy;
using namespace daisysp;
#define DMA_AREA_SIZE (3*(1 << 16))
#define SCOPE_RING_BUF_SIZE 1024
#define AUDIO_BLOCK_SIZE 2
/* declarations */
DaisySeed daisy_hw;
CpuLoadMeter load_meter;
osclsk_scope scope;
uint8_t DMA_BUFFER_MEM_SECTION dma_area[DMA_AREA_SIZE];
static void audio_cb(AudioHandle::InputBuffer in,
AudioHandle::OutputBuffer out, size_t sz);
Oscillator osc;
WhiteNoise noise;
AdEnv kickVolEnv, kickPitchEnv, snareEnv;
Switch kick, snare;
RingBuffer<float, SCOPE_RING_BUF_SIZE> scope_in;
static void
audio_cb(AudioHandle::InputBuffer in,
AudioHandle::OutputBuffer out, size_t sz)
{
float osc_out, noise_out, snr_env_out, kck_env_out;
float sig[AUDIO_BLOCK_SIZE];
load_meter.OnBlockStart();
//Get rid of any bouncing
snare.Debounce();
kick.Debounce();
//If you press the kick button...
if(kick.RisingEdge())
{
//Trigger both envelopes!
kickVolEnv.Trigger();
kickPitchEnv.Trigger();
}
//If press the snare button trigger its envelope
if(snare.RisingEdge())
{
snareEnv.Trigger();
}
//Prepare the audio block
for(size_t i = 0; i < sz; i++)
{
//Get the next volume samples
snr_env_out = snareEnv.Process();
kck_env_out = kickVolEnv.Process();
//Apply the pitch envelope to the kick
osc.SetFreq(kickPitchEnv.Process());
//Set the kick volume to the envelope's output
osc.SetAmp(kck_env_out);
//Process the next oscillator sample
osc_out = osc.Process();
//Get the next snare sample
noise_out = noise.Process();
//Set the sample to the correct volume
noise_out *= snr_env_out;
//Mix the two signals at half volume
sig[i] = .5 * noise_out + .5 * osc_out;
}
for (size_t i = 0; i < sz; i++) {
out[0][i] = sig[i];
out[1][i] = sig[i];
}
scope_in.Overwrite(sig, sz);
load_meter.OnBlockEnd();
}
static void
setup_drums(void)
{
float samplerate;
/* kick n snare */
samplerate = daisy_hw.AudioSampleRate();
//Initialize oscillator for kickdrum
osc.Init(samplerate);
osc.SetWaveform(Oscillator::WAVE_TRI);
osc.SetAmp(1);
//Initialize noise
noise.Init();
//Initialize envelopes, this one's for the snare amplitude
snareEnv.Init(samplerate);
snareEnv.SetTime(ADENV_SEG_ATTACK, .01);
snareEnv.SetTime(ADENV_SEG_DECAY, .2);
snareEnv.SetMax(1);
snareEnv.SetMin(0);
//This envelope will control the kick oscillator's pitch
//Note that this envelope is much faster than the volume
kickPitchEnv.Init(samplerate);
kickPitchEnv.SetTime(ADENV_SEG_ATTACK, .01);
kickPitchEnv.SetTime(ADENV_SEG_DECAY, .05);
kickPitchEnv.SetMax(400);
kickPitchEnv.SetMin(50);
//This one will control the kick's volume
kickVolEnv.Init(samplerate);
kickVolEnv.SetTime(ADENV_SEG_ATTACK, .01);
kickVolEnv.SetTime(ADENV_SEG_DECAY, 1);
kickVolEnv.SetMax(1);
kickVolEnv.SetMin(0);
//Initialize the kick and snare buttons on pins 27 and 28
//The callback rate is samplerate / blocksize (48)
snare.Init(daisy_hw.GetPin(27), samplerate / (float)AUDIO_BLOCK_SIZE);
kick.Init(daisy_hw.GetPin(28), samplerate / (float)AUDIO_BLOCK_SIZE);
}
#define LOAD_METER_TICKS (1 << 16)
int
main(void)
{
size_t read;
float s[AUDIO_BLOCK_SIZE];
int load_tick;
daisy_hw.Configure();
daisy_hw.Init();
daisy_hw.StartLog(false); /* true = wait for usb connection */
daisy_hw.SetAudioBlockSize(AUDIO_BLOCK_SIZE);
load_meter.Init(daisy_hw.AudioSampleRate(), daisy_hw.AudioBlockSize());
load_tick = LOAD_METER_TICKS;
if (scope.init(dma_area, sizeof(dma_area)) == -1)
daisy_hw.PrintLine("scope.init failed");
scope_in.Init();
setup_drums();
daisy_hw.StartAudio(audio_cb);
while (true) {
read = scope_in.readable();
read = (read <= sizeof(s)/sizeof(*s)) ? read :
sizeof(s)/sizeof(*s);
scope_in.ImmediateRead(s, read);
scope.sample(s, read);
switch (scope.state()) {
case osclsk_scope::osc_state::SAMPLE_DONE:
scope.render_block();
break;
case osclsk_scope::osc_state::RENDER_DONE:
scope.prep();
break;
case osclsk_scope::osc_state::READY:
scope.trig();
break;
default:
break;
}
if (--load_tick == 0) {
load_tick = LOAD_METER_TICKS;
// get the current load (smoothed value and peak values)
const float avgLoad = load_meter.GetAvgCpuLoad();
const float maxLoad = load_meter.GetMaxCpuLoad();
const float minLoad = load_meter.GetMinCpuLoad();
// print it to the serial connection (as percentages)
daisy_hw.PrintLine("Processing Load %:");
daisy_hw.PrintLine("Max: " FLT_FMT3, FLT_VAR3(maxLoad * 100.0f));
daisy_hw.PrintLine("Avg: " FLT_FMT3, FLT_VAR3(avgLoad * 100.0f));
daisy_hw.PrintLine("Min: " FLT_FMT3, FLT_VAR3(minLoad * 100.0f));
}
}
}