notes for subtyping rules
This commit is contained in:
parent
7e3c7c88ea
commit
15fc99b8c8
1 changed files with 93 additions and 0 deletions
93
README.md
93
README.md
|
@ -24,3 +24,96 @@ n ∈ nominal
|
|||
a ∈ opname
|
||||
```
|
||||
|
||||
## sappho subtyping rules
|
||||
|
||||
```
|
||||
s, t, γ ⊢ δ
|
||||
---- [conj-left]
|
||||
s & t, γ ⊢ δ
|
||||
|
||||
γ ⊢ s, t, δ
|
||||
---- [disj-right]
|
||||
γ ⊢ s | t, δ
|
||||
|
||||
s, γ ⊢ δ
|
||||
t, γ ⊢ δ
|
||||
---- [disj-left]
|
||||
s | t, γ ⊢ δ
|
||||
|
||||
γ ⊢ s, δ
|
||||
γ ⊢ t, δ
|
||||
---- [conj-right]
|
||||
γ ⊢ s & t, δ
|
||||
|
||||
// XXX
|
||||
s => t, s, t, γ ⊢ δ
|
||||
---- [impl-left]
|
||||
s => t, s, γ ⊢ δ
|
||||
|
||||
// discussion about implication below
|
||||
s, γ ⊢ t, δ
|
||||
---- [impl-right]
|
||||
γ ⊢ s => t, δ
|
||||
|
||||
|
||||
// box works as a kind of "forall" for concrete types
|
||||
box t, t, γ ⊢ δ
|
||||
---- [box-left]
|
||||
box t, γ ⊢ δ
|
||||
|
||||
// (.)-- filters the contexts.
|
||||
γ-- ⊢ t, δ--
|
||||
---- [box-right]
|
||||
γ ⊢ box t, δ
|
||||
|
||||
|
||||
|
||||
```
|
||||
|
||||
|
||||
### context operators
|
||||
|
||||
```
|
||||
(t, γ)-- =def= t, γ-- if t == box s
|
||||
γ-- otherwise
|
||||
```
|
||||
|
||||
What happens when box is buried under type operators, like box s & box t? It
|
||||
could be that the above definition filters out too much of the contexts.
|
||||
|
||||
My gut feeling™ makes me think it is just a matter of reordering sequent rules
|
||||
to get keep the things wanted in context, which for an algorithm sucks, but from
|
||||
a declarative standpoint would be okay. This needs some further validation, and
|
||||
of course a reformulation for the actual algorithm.
|
||||
|
||||
|
||||
|
||||
|
||||
### implication
|
||||
```
|
||||
|
||||
γ ⊢ s => t, u => s, δ
|
||||
|
||||
if s, then u => s holds
|
||||
if ¬s, then s => t holds
|
||||
|
||||
```
|
||||
|
||||
|
||||
|
||||
### interpretation of ⊢
|
||||
what is the interpretation of
|
||||
|
||||
γ ⊢ δ?
|
||||
|
||||
|
||||
given a concrete type k
|
||||
|
||||
conjunction of γ hold for k
|
||||
|
||||
then
|
||||
|
||||
disjunction of δ hold for k
|
||||
|
||||
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue