cleaned up readme
This commit is contained in:
parent
78a4c6df6d
commit
33b8a30610
3 changed files with 480 additions and 453 deletions
466
README.md
466
README.md
|
@ -2,464 +2,24 @@
|
|||
|
||||
experimental type system implementation
|
||||
|
||||
## sappho grammar
|
||||
## getting and building
|
||||
|
||||
```sh
|
||||
git clone ssh://git@gitta.log-e.se:222/lnsol/log-e-sappho.git
|
||||
cd ./log-e-sappho
|
||||
cmake . -B build
|
||||
cd build
|
||||
make
|
||||
```
|
||||
s, t ::= s | t (disjunction, a.k.a. union)
|
||||
| s & t (conjunction, a.k.a. intersection)
|
||||
| s => t (implication)
|
||||
| s -> t (arrow, a.k.a. function)
|
||||
| forall x . t (forall, polymorphic)
|
||||
| box t (box, c.f. modular logic)
|
||||
| a [t..] (type operator application)
|
||||
| x (variable)
|
||||
| n (nominal)
|
||||
| true (true, a.k.a. top)
|
||||
| false (false, a.k.a. bottom)
|
||||
| { m : t } (member, a.k.a. atomic record)
|
||||
|
||||
## repository content
|
||||
|
||||
x ∈ var
|
||||
n ∈ nominal
|
||||
a ∈ opname
|
||||
```
|
||||
|
||||
## sappho subtyping rules
|
||||
|
||||
```
|
||||
---- [identity]
|
||||
s, γ ⊢ s, δ
|
||||
|
||||
---- [true-right]
|
||||
γ ⊢ true, δ
|
||||
|
||||
---- [false-left]
|
||||
false, γ ⊢ δ
|
||||
|
||||
s, t, γ ⊢ δ
|
||||
---- [conj-left]
|
||||
s & t, γ ⊢ δ
|
||||
|
||||
γ ⊢ s, t, δ
|
||||
---- [disj-right]
|
||||
γ ⊢ s | t, δ
|
||||
|
||||
s, γ ⊢ δ
|
||||
t, γ ⊢ δ
|
||||
---- [disj-left]
|
||||
s | t, γ ⊢ δ
|
||||
|
||||
γ ⊢ s, δ
|
||||
γ ⊢ t, δ
|
||||
---- [conj-right]
|
||||
γ ⊢ s & t, δ
|
||||
|
||||
// XXX
|
||||
// remove s => t? always make progress
|
||||
s => t, s, t, γ ⊢ δ
|
||||
---- [impl-left]
|
||||
s => t, s, γ ⊢ δ
|
||||
|
||||
// discussion about implication below
|
||||
// check how "normal sequent calculus handles this"
|
||||
s, γ ⊢ t, δ
|
||||
---- [impl-right]
|
||||
γ ⊢ s => t, δ
|
||||
|
||||
|
||||
|
||||
// box works as a kind of "forall" for concrete types
|
||||
box t, t, γ ⊢ δ
|
||||
---- [box-left]
|
||||
box t, γ ⊢ δ
|
||||
|
||||
// (.)-- filters the contexts.
|
||||
γ-- ⊢ t, δ--
|
||||
---- [box-right]
|
||||
γ ⊢ box t, δ
|
||||
|
||||
|
||||
// using cyclic proof strategy, rule for dealing with aliases/type operators
|
||||
// becomes really simple. However, this requires well-formedness rules on types
|
||||
// to exclude typedefs like
|
||||
// type A = A
|
||||
// Or that our cycle detection excludes paths between "identical" states.
|
||||
γ ⊢ expand(a[t..]), δ
|
||||
----
|
||||
γ ⊢ a[t..], δ
|
||||
|
||||
expand(a[t..]), γ ⊢ δ
|
||||
----
|
||||
a[t..], γ ⊢ δ
|
||||
|
||||
|
||||
// member types are filtered according to member name
|
||||
γ >> m ⊢ δ >> m
|
||||
---- [member]
|
||||
γ ⊢ δ
|
||||
|
||||
|
||||
// foralls are unwrapped and variable substituted with fresh name
|
||||
// i.e. we treat the bound variable nominally
|
||||
n fresh
|
||||
γ [n] ⊢ δ [n]
|
||||
---- [forall]
|
||||
γ ⊢ δ
|
||||
|
||||
c, γ* ⊢ a_1, ..., a_n
|
||||
∀ I ⊆ {1, ..., n}.
|
||||
c, γ* ⊢ { a_i | i ∈ I }, δ*
|
||||
OR
|
||||
{ b_i | i ∈ ¬I }, γ* ⊢ d, δ*
|
||||
---- [loads-of-fun]
|
||||
a_1 -> b_1, ..., a_n -> b_n, γ ⊢ c -> d, δ
|
||||
```
|
||||
|
||||
|
||||
### context operators
|
||||
|
||||
* box filtering
|
||||
```
|
||||
(t, γ)-- =def= t, γ-- if t == box s, for some s
|
||||
γ-- otherwise
|
||||
```
|
||||
|
||||
* member unwrapping
|
||||
```
|
||||
(t, γ) >> m =def= s, (γ >> m) if t == { m : s }, for some s
|
||||
t, (γ >> m) if t == box s, for some s
|
||||
γ >> m otherwise
|
||||
```
|
||||
|
||||
* forall-unwrapping and substitution
|
||||
```
|
||||
(t, γ) [n] =def= s [n/x], (γ [n]) if t == forall x . s, for some x, s
|
||||
t, (γ [n]) if t == box s, for some s
|
||||
γ [n] otherwise
|
||||
```
|
||||
|
||||
### Semantic function subtyping
|
||||
|
||||
*Here we try to give an intuitive explainer of how to reason about function
|
||||
subtyping in the semantic subtyping domain.*
|
||||
|
||||
Given function types
|
||||
```
|
||||
a_1 -> b_1, ..., a_n -> b_n
|
||||
```
|
||||
the conjunction (intersection) of `a_i -> b_i`, i.e.
|
||||
```
|
||||
intsec = (a_1 -> b_1) & ... & (a_n -> b_n)
|
||||
```
|
||||
represents the set of functions that combines the properties of all
|
||||
`a_i -> b_i` by themselves. To get an idea of what functions this describes,
|
||||
let's start with reasoning about values, that is, functions in `intsec`.
|
||||
First we note that any function in this set accepts any argument that are in
|
||||
either of the `a_i`s. That is, it can take any argument in the set represented
|
||||
by
|
||||
```
|
||||
a = a_1 | ... | a_n
|
||||
```
|
||||
Furthermore, a function `f` in `intsec` "promises" to map any value in `a_i` to
|
||||
a value in its corresponding `b_i`.
|
||||
Specifically, given `I ⊆ {1..n}`, a value `v` in the intersection
|
||||
```
|
||||
a_I_intsec = &[i ∈ I] a_i
|
||||
```
|
||||
is mapped to a value in
|
||||
```
|
||||
b_I_intsec = &[i ∈ I] b_i
|
||||
```
|
||||
that is,
|
||||
```
|
||||
v ∈ &[i ∈ I] a_i implies f(v) ∈ &[i ∈ I] b_i
|
||||
```
|
||||
|
||||
*In the following we will "abuse notation" a bit. Try to look at it like
|
||||
talking to an old friend, and you just instinctively know exactly what they
|
||||
mean without explaining...*
|
||||
|
||||
Now, given a type `c -> d`, how do we know if
|
||||
```
|
||||
intsec = &[i ∈ {1..n}] a_i -> b_i <: c -> d
|
||||
```
|
||||
?
|
||||
Or equivalently, friend speaking, if
|
||||
```
|
||||
∩[i ∈ {1..n}] a_i -> b_i ⊆ c -> d
|
||||
```
|
||||
?
|
||||
|
||||
Immediately, it should be obvious that
|
||||
```
|
||||
c ⊆ a (= ∪[i ∈ {1..}] a_i)
|
||||
```
|
||||
Furthermore, it is necessary that any function in `intsec` will have to map all
|
||||
values in `c` into `d`, specifically
|
||||
```
|
||||
f ∈ intsec, v ∈ c implies f(v) ∈ d
|
||||
```
|
||||
Note that this does not mean that any function in `a_i -> b_i` must map all
|
||||
values in `a_i` into `d`, since it's not necessary that `a_i \ c = ø`.
|
||||
Specifically, it is not necessary that `b_i ⊆ d`. However, taking `I ⊆ {1..n}`,
|
||||
assuming
|
||||
```
|
||||
a_I_intsec = &[i ∈ I] a_i ⊆ c
|
||||
```
|
||||
then, necessarily
|
||||
```
|
||||
b_I_intsec = &[i ∈ I] b_i ⊆ d
|
||||
```
|
||||
|
||||
Conversely, if
|
||||
```
|
||||
b_I_intsect ⊆ d
|
||||
```
|
||||
then any function in `intsec` maps `a_I_intsec` into `d`. If `a_I_intsec`
|
||||
happens to intersect with `c`, it "covers" a part of `c`. I.e. the set `I` can
|
||||
be understood as promising to map a part of `c` into `d`.
|
||||
|
||||
Defining this formally, we say that `I_cand ⊆ {1..n}` is a (`d`-)*candidate* if,
|
||||
```
|
||||
∩[i ∈ I_cand] b_i ⊆ d
|
||||
```
|
||||
We can thus see a candidate `I_cand` as a combination, or more specifically,
|
||||
intersection of the function types `{a_i -> b_i | i ∈ I_cand}`, that according
|
||||
to the reasoning above promises to map a part of the domain into `d`, namely
|
||||
```
|
||||
∩[i ∈ I_cand] a_i
|
||||
```
|
||||
A candidate thus "covers" part of the domain or formally speaking, `I`
|
||||
(`d`-)covers a domain `s` if `I` is a (`d`-)candidate and
|
||||
```
|
||||
s ⊆ ∩[i ∈ I] a_i
|
||||
```
|
||||
If `IS ⊆ P({1..n})` then we say that `IS` (`d`-)covers `s` if all of `s` is
|
||||
covered by some `I ∈ IS`, that is
|
||||
```
|
||||
s ⊆ ∪[I ∈ IS | I is d-candidate] ∩[i ∈ I] a_i
|
||||
```
|
||||
|
||||
Given the function types `{a_i -> b_i | i ∈ {1..n}}` and its set of candidates
|
||||
`IC = {I_cand_1..I_cand_k}`, it is fairly easy to see that
|
||||
```
|
||||
&[i ∈ {1..n}] (a_i -> b_i) <: c -> d
|
||||
```
|
||||
iff `IC` `d`-covers `c`:
|
||||
```
|
||||
c ⊆ ( ∪[I_cand ∈ IC] ∩[i ∈ I_cand] a_i )
|
||||
```
|
||||
Using some *pro gamer moves*, we can see that this is equivalent to
|
||||
```
|
||||
c ⊆ ( ∩[I_cand ∈ IC] ∪[i ∉ I_cand] a_i )
|
||||
```
|
||||
This gives us the final form for our subtyping rule
|
||||
```
|
||||
c, γ* ⊢ a_i | ... | a_n, δ*
|
||||
forall I ⊆ {1..n}.
|
||||
&[i ∈ I] b_i, γ* ⊢ d, δ*
|
||||
or
|
||||
c, γ* ⊢ |[i ∉ I] a_i, δ*
|
||||
---- [loads-o-fun]
|
||||
a_1 -> b_1, ..., a_n -> b_n, γ ⊢ c -> d, δ
|
||||
```
|
||||
|
||||
### Recursive subtyping
|
||||
|
||||
Type aliases creates the possibility of recursive types, and thus we need to
|
||||
handle recursive subtyping
|
||||
|
||||
Handling subtyping co-inductively would enable us to handle the relation
|
||||
```
|
||||
type A = { x : { y : A } }
|
||||
type B = { y : { x : B } }
|
||||
|
||||
A <: { x : B }
|
||||
{ x : B } <: A
|
||||
```
|
||||
|
||||
|
||||
We have made progress if we "switch context"
|
||||
|
||||
If we make progress and end up at the same sequent, co-induction gives us the
|
||||
conclusion.
|
||||
|
||||
Some actions/rules lead to equivalent contexts, i.e. does not switch
|
||||
context/make progress.
|
||||
|
||||
### Other
|
||||
|
||||
True ~ { x : True } on the left
|
||||
False ~ { x : False } on the right
|
||||
|
||||
or rather
|
||||
|
||||
True ~ { x : True } in positive position
|
||||
False ~ { x : False } in negative position
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
### implication
|
||||
```
|
||||
|
||||
γ ⊢ s => t, u => s, δ
|
||||
|
||||
if s, then u => s holds
|
||||
if ¬s, then s => t holds
|
||||
|
||||
```
|
||||
|
||||
|
||||
altho
|
||||
```
|
||||
γ ⊢ s => t, s, δ
|
||||
```
|
||||
|
||||
Given the msph program
|
||||
```
|
||||
nominal n
|
||||
|
||||
type Woops[e] = {
|
||||
member f : (e <: false => n) | (e <: false)
|
||||
}
|
||||
|
||||
type Noooes = {
|
||||
member f : true
|
||||
}
|
||||
```
|
||||
we can prove that, for any type `t`
|
||||
```
|
||||
Noooes <: Woops[t]
|
||||
```
|
||||
|
||||
The derivation looks like this:
|
||||
```
|
||||
---- [identity]
|
||||
true, t <: false ⊢ n, (t <: false)
|
||||
---- [impl-right]
|
||||
true ⊢ (t <: false => n), (t <: false)
|
||||
---- [disj-right]
|
||||
true ⊢ (t <: false => n) | (t <: false)
|
||||
---- [member]
|
||||
{ f : true } ⊢ { f : (t <: false => n) | (t <: false) }
|
||||
---- [expand-right]
|
||||
{ f : true } ⊢ Woops[t]
|
||||
---- [expand-left]
|
||||
Nooes ⊢ Woops[t]
|
||||
---- [impl-right]
|
||||
⊢ Nooes => Woops[t]
|
||||
---- [box-right]
|
||||
⊢ Nooes <: Woops[t]
|
||||
```
|
||||
|
||||
This looks a bit dangerous at first. However, if we translate the implication to
|
||||
using disjunction and negation, we get
|
||||
```
|
||||
(t <: false => N) | (t <: false) == (¬(t <: false) | n) | (t <: false)
|
||||
```
|
||||
|
||||
Considering the two cases
|
||||
```
|
||||
(1) t == false
|
||||
(2) t != false
|
||||
```
|
||||
we see that in (1)
|
||||
```
|
||||
(¬(t <: false) | n) | (t <: false) ==
|
||||
(¬(true) | n) | (true) ==
|
||||
true
|
||||
```
|
||||
and in (2)
|
||||
```
|
||||
(¬(t <: false) | n) | (t <: false) ==
|
||||
(¬(false) | n) | false ==
|
||||
(true | n) | false ==
|
||||
true
|
||||
```
|
||||
|
||||
## What is true?
|
||||
|
||||
Our "set interpretation" of types says `true` represents the full universe of
|
||||
"things".
|
||||
|
||||
What are these things?
|
||||
|
||||
For all intents and purposes, a programmer can look at them as the values of
|
||||
our language.
|
||||
|
||||
What does this mean in practical terms?
|
||||
|
||||
Well, it means something of type `true` is "a value".
|
||||
|
||||
What is "a value" then?
|
||||
|
||||
That's a good question. It can be anything really.
|
||||
|
||||
An integer?
|
||||
|
||||
Yep!
|
||||
|
||||
A function?
|
||||
|
||||
Yes, m'am!
|
||||
|
||||
A solution to the halting problem?
|
||||
|
||||
Well, yeah! But good luck constructing that.
|
||||
|
||||
A...
|
||||
|
||||
I think you get my point. A value can be anything from a simple integer to
|
||||
nuclear apocalypse. The thing is, from the point of view of our program, it
|
||||
means "we cannot really say anything here".
|
||||
|
||||
But couldn't that be dangerous?
|
||||
|
||||
Depends on what you mean by dangerous.
|
||||
|
||||
I mean, to be able to give everything a type?
|
||||
|
||||
Well, let me ask you this: do you like rat poison?
|
||||
|
||||
What? To eat?
|
||||
|
||||
Yeah!
|
||||
|
||||
Nooo, that'd be dangerous!
|
||||
|
||||
Yeah, exactly my point.
|
||||
|
||||
What?
|
||||
|
||||
You know what rat poison is obviously, despite it being dangerous?
|
||||
|
||||
Well, yeah...
|
||||
|
||||
Maybe you got it already, but my point is: rat poison is dangerous, but you
|
||||
still know about it, and its existance. So, something being dangerous does not
|
||||
mean you have this blank spot of knowledge that you just keep ignoring because
|
||||
of this perceived danger.
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
### interpretation of ⊢
|
||||
what is the interpretation of
|
||||
|
||||
γ ⊢ δ?
|
||||
|
||||
|
||||
given a concrete type k
|
||||
|
||||
conjunction of γ hold for k
|
||||
|
||||
then
|
||||
|
||||
disjunction of δ hold for k
|
||||
This repository contains:
|
||||
|
||||
* a library implementation of *sappho* called `spho`.
|
||||
* a simple language parser (and soon type checker), called `msph`, developed in
|
||||
tandem with `spho`.
|
||||
* documentation of the sappho type system in `docs/`
|
||||
|
||||
|
||||
|
||||
|
|
379
docs/about/formalities.md
Normal file
379
docs/about/formalities.md
Normal file
|
@ -0,0 +1,379 @@
|
|||
# description of sappho formals
|
||||
|
||||
## sappho grammar
|
||||
|
||||
```
|
||||
s, t ::= s | t (disjunction, a.k.a. union)
|
||||
| s & t (conjunction, a.k.a. intersection)
|
||||
| s => t (implication)
|
||||
| s -> t (arrow, a.k.a. function)
|
||||
| forall x . t (forall, polymorphic)
|
||||
| box t (box, c.f. modular logic)
|
||||
| a [t..] (type operator application)
|
||||
| x (variable)
|
||||
| n (nominal)
|
||||
| true (true, a.k.a. top)
|
||||
| false (false, a.k.a. bottom)
|
||||
| { m : t } (member, a.k.a. atomic record)
|
||||
|
||||
|
||||
x ∈ var
|
||||
n ∈ nominal
|
||||
a ∈ opname
|
||||
```
|
||||
|
||||
## sappho subtyping rules
|
||||
|
||||
```
|
||||
---- [identity]
|
||||
s, γ ⊢ s, δ
|
||||
|
||||
---- [true-right]
|
||||
γ ⊢ true, δ
|
||||
|
||||
---- [false-left]
|
||||
false, γ ⊢ δ
|
||||
|
||||
s, t, γ ⊢ δ
|
||||
---- [conj-left]
|
||||
s & t, γ ⊢ δ
|
||||
|
||||
γ ⊢ s, t, δ
|
||||
---- [disj-right]
|
||||
γ ⊢ s | t, δ
|
||||
|
||||
s, γ ⊢ δ
|
||||
t, γ ⊢ δ
|
||||
---- [disj-left]
|
||||
s | t, γ ⊢ δ
|
||||
|
||||
γ ⊢ s, δ
|
||||
γ ⊢ t, δ
|
||||
---- [conj-right]
|
||||
γ ⊢ s & t, δ
|
||||
|
||||
// XXX
|
||||
// remove s => t? always make progress
|
||||
s => t, s, t, γ ⊢ δ
|
||||
---- [impl-left]
|
||||
s => t, s, γ ⊢ δ
|
||||
|
||||
// discussion about implication below
|
||||
// check how "normal sequent calculus handles this"
|
||||
s, γ ⊢ t, δ
|
||||
---- [impl-right]
|
||||
γ ⊢ s => t, δ
|
||||
|
||||
|
||||
|
||||
// box works as a kind of "forall" for concrete types
|
||||
box t, t, γ ⊢ δ
|
||||
---- [box-left]
|
||||
box t, γ ⊢ δ
|
||||
|
||||
// (.)-- filters the contexts.
|
||||
γ-- ⊢ t, δ--
|
||||
---- [box-right]
|
||||
γ ⊢ box t, δ
|
||||
|
||||
|
||||
// using cyclic proof strategy, rule for dealing with aliases/type operators
|
||||
// becomes really simple. However, this requires well-formedness rules on types
|
||||
// to exclude typedefs like
|
||||
// type A = A
|
||||
// Or that our cycle detection excludes paths between "identical" states.
|
||||
γ ⊢ expand(a[t..]), δ
|
||||
----
|
||||
γ ⊢ a[t..], δ
|
||||
|
||||
expand(a[t..]), γ ⊢ δ
|
||||
----
|
||||
a[t..], γ ⊢ δ
|
||||
|
||||
|
||||
// member types are filtered according to member name
|
||||
γ >> m ⊢ δ >> m
|
||||
---- [member]
|
||||
γ ⊢ δ
|
||||
|
||||
|
||||
// foralls are unwrapped and variable substituted with fresh name
|
||||
// i.e. we treat the bound variable nominally
|
||||
n fresh
|
||||
γ [n] ⊢ δ [n]
|
||||
---- [forall]
|
||||
γ ⊢ δ
|
||||
|
||||
c, γ* ⊢ a_1, ..., a_n
|
||||
∀ I ⊆ {1, ..., n}.
|
||||
c, γ* ⊢ { a_i | i ∈ I }, δ*
|
||||
OR
|
||||
{ b_i | i ∈ ¬I }, γ* ⊢ d, δ*
|
||||
---- [loads-of-fun]
|
||||
a_1 -> b_1, ..., a_n -> b_n, γ ⊢ c -> d, δ
|
||||
```
|
||||
|
||||
|
||||
### context operators
|
||||
|
||||
* box filtering
|
||||
```
|
||||
(t, γ)-- =def= t, γ-- if t == box s, for some s
|
||||
γ-- otherwise
|
||||
```
|
||||
|
||||
* member unwrapping
|
||||
```
|
||||
(t, γ) >> m =def= s, (γ >> m) if t == { m : s }, for some s
|
||||
t, (γ >> m) if t == box s, for some s
|
||||
γ >> m otherwise
|
||||
```
|
||||
|
||||
* forall-unwrapping and substitution
|
||||
```
|
||||
(t, γ) [n] =def= s [n/x], (γ [n]) if t == forall x . s, for some x, s
|
||||
t, (γ [n]) if t == box s, for some s
|
||||
γ [n] otherwise
|
||||
```
|
||||
|
||||
### Semantic function subtyping
|
||||
|
||||
*Here we try to give an intuitive explainer of how to reason about function
|
||||
subtyping in the semantic subtyping domain.*
|
||||
|
||||
Given function types
|
||||
```
|
||||
a_1 -> b_1, ..., a_n -> b_n
|
||||
```
|
||||
the conjunction (intersection) of `a_i -> b_i`, i.e.
|
||||
```
|
||||
intsec = (a_1 -> b_1) & ... & (a_n -> b_n)
|
||||
```
|
||||
represents the set of functions that combines the properties of all
|
||||
`a_i -> b_i` by themselves. To get an idea of what functions this describes,
|
||||
let's start with reasoning about values, that is, functions in `intsec`.
|
||||
First we note that any function in this set accepts any argument that are in
|
||||
either of the `a_i`s. That is, it can take any argument in the set represented
|
||||
by
|
||||
```
|
||||
a = a_1 | ... | a_n
|
||||
```
|
||||
Furthermore, a function `f` in `intsec` "promises" to map any value in `a_i` to
|
||||
a value in its corresponding `b_i`.
|
||||
Specifically, given `I ⊆ {1..n}`, a value `v` in the intersection
|
||||
```
|
||||
a_I_intsec = &[i ∈ I] a_i
|
||||
```
|
||||
is mapped to a value in
|
||||
```
|
||||
b_I_intsec = &[i ∈ I] b_i
|
||||
```
|
||||
that is,
|
||||
```
|
||||
v ∈ &[i ∈ I] a_i implies f(v) ∈ &[i ∈ I] b_i
|
||||
```
|
||||
|
||||
*In the following we will "abuse notation" a bit. Try to look at it like
|
||||
talking to an old friend, and you just instinctively know exactly what they
|
||||
mean without explaining...*
|
||||
|
||||
Now, given a type `c -> d`, how do we know if
|
||||
```
|
||||
intsec = &[i ∈ {1..n}] a_i -> b_i <: c -> d
|
||||
```
|
||||
?
|
||||
Or equivalently, friend speaking, if
|
||||
```
|
||||
∩[i ∈ {1..n}] a_i -> b_i ⊆ c -> d
|
||||
```
|
||||
?
|
||||
|
||||
Immediately, it should be obvious that
|
||||
```
|
||||
c ⊆ a (= ∪[i ∈ {1..}] a_i)
|
||||
```
|
||||
Furthermore, it is necessary that any function in `intsec` will have to map all
|
||||
values in `c` into `d`, specifically
|
||||
```
|
||||
f ∈ intsec, v ∈ c implies f(v) ∈ d
|
||||
```
|
||||
Note that this does not mean that any function in `a_i -> b_i` must map all
|
||||
values in `a_i` into `d`, since it's not necessary that `a_i \ c = ø`.
|
||||
Specifically, it is not necessary that `b_i ⊆ d`. However, taking `I ⊆ {1..n}`,
|
||||
assuming
|
||||
```
|
||||
a_I_intsec = &[i ∈ I] a_i ⊆ c
|
||||
```
|
||||
then, necessarily
|
||||
```
|
||||
b_I_intsec = &[i ∈ I] b_i ⊆ d
|
||||
```
|
||||
|
||||
Conversely, if
|
||||
```
|
||||
b_I_intsect ⊆ d
|
||||
```
|
||||
then any function in `intsec` maps `a_I_intsec` into `d`. If `a_I_intsec`
|
||||
happens to intersect with `c`, it "covers" a part of `c`. I.e. the set `I` can
|
||||
be understood as promising to map a part of `c` into `d`.
|
||||
|
||||
Defining this formally, we say that `I_cand ⊆ {1..n}` is a (`d`-)*candidate* if,
|
||||
```
|
||||
∩[i ∈ I_cand] b_i ⊆ d
|
||||
```
|
||||
We can thus see a candidate `I_cand` as a combination, or more specifically,
|
||||
intersection of the function types `{a_i -> b_i | i ∈ I_cand}`, that according
|
||||
to the reasoning above promises to map a part of the domain into `d`, namely
|
||||
```
|
||||
∩[i ∈ I_cand] a_i
|
||||
```
|
||||
A candidate thus "covers" part of the domain or formally speaking, `I`
|
||||
(`d`-)covers a domain `s` if `I` is a (`d`-)candidate and
|
||||
```
|
||||
s ⊆ ∩[i ∈ I] a_i
|
||||
```
|
||||
If `IS ⊆ P({1..n})` then we say that `IS` (`d`-)covers `s` if all of `s` is
|
||||
covered by some `I ∈ IS`, that is
|
||||
```
|
||||
s ⊆ ∪[I ∈ IS | I is d-candidate] ∩[i ∈ I] a_i
|
||||
```
|
||||
|
||||
Given the function types `{a_i -> b_i | i ∈ {1..n}}` and its set of candidates
|
||||
`IC = {I_cand_1..I_cand_k}`, it is fairly easy to see that
|
||||
```
|
||||
&[i ∈ {1..n}] (a_i -> b_i) <: c -> d
|
||||
```
|
||||
iff `IC` `d`-covers `c`:
|
||||
```
|
||||
c ⊆ ( ∪[I_cand ∈ IC] ∩[i ∈ I_cand] a_i )
|
||||
```
|
||||
Using some *pro gamer moves*, we can see that this is equivalent to
|
||||
```
|
||||
c ⊆ ( ∩[I_cand ∈ IC] ∪[i ∉ I_cand] a_i )
|
||||
```
|
||||
This gives us the final form for our subtyping rule
|
||||
```
|
||||
c, γ* ⊢ a_i | ... | a_n, δ*
|
||||
forall I ⊆ {1..n}.
|
||||
&[i ∈ I] b_i, γ* ⊢ d, δ*
|
||||
or
|
||||
c, γ* ⊢ |[i ∉ I] a_i, δ*
|
||||
---- [loads-o-fun]
|
||||
a_1 -> b_1, ..., a_n -> b_n, γ ⊢ c -> d, δ
|
||||
```
|
||||
|
||||
### Recursive subtyping
|
||||
|
||||
Type aliases creates the possibility of recursive types, and thus we need to
|
||||
handle recursive subtyping
|
||||
|
||||
Handling subtyping co-inductively would enable us to handle the relation
|
||||
```
|
||||
type A = { x : { y : A } }
|
||||
type B = { y : { x : B } }
|
||||
|
||||
A <: { x : B }
|
||||
{ x : B } <: A
|
||||
```
|
||||
|
||||
|
||||
We have made progress if we "switch context"
|
||||
|
||||
If we make progress and end up at the same sequent, co-induction gives us the
|
||||
conclusion.
|
||||
|
||||
Some actions/rules lead to equivalent contexts, i.e. does not switch
|
||||
context/make progress.
|
||||
|
||||
### Other
|
||||
|
||||
True ~ { x : True } on the left
|
||||
False ~ { x : False } on the right
|
||||
|
||||
or rather
|
||||
|
||||
True ~ { x : True } in positive position
|
||||
False ~ { x : False } in negative position
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
### implication
|
||||
```
|
||||
|
||||
γ ⊢ s => t, u => s, δ
|
||||
|
||||
if s, then u => s holds
|
||||
if ¬s, then s => t holds
|
||||
|
||||
```
|
||||
|
||||
|
||||
altho
|
||||
```
|
||||
γ ⊢ s => t, s, δ
|
||||
```
|
||||
|
||||
Given the msph program
|
||||
```
|
||||
nominal n
|
||||
|
||||
type Woops[e] = {
|
||||
member f : (e <: false => n) | (e <: false)
|
||||
}
|
||||
|
||||
type Noooes = {
|
||||
member f : true
|
||||
}
|
||||
```
|
||||
we can prove that, for any type `t`
|
||||
```
|
||||
Noooes <: Woops[t]
|
||||
```
|
||||
|
||||
The derivation looks like this:
|
||||
```
|
||||
---- [identity]
|
||||
true, t <: false ⊢ n, (t <: false)
|
||||
---- [impl-right]
|
||||
true ⊢ (t <: false => n), (t <: false)
|
||||
---- [disj-right]
|
||||
true ⊢ (t <: false => n) | (t <: false)
|
||||
---- [member]
|
||||
{ f : true } ⊢ { f : (t <: false => n) | (t <: false) }
|
||||
---- [expand-right]
|
||||
{ f : true } ⊢ Woops[t]
|
||||
---- [expand-left]
|
||||
Nooes ⊢ Woops[t]
|
||||
---- [impl-right]
|
||||
⊢ Nooes => Woops[t]
|
||||
---- [box-right]
|
||||
⊢ Nooes <: Woops[t]
|
||||
```
|
||||
|
||||
This looks a bit dangerous at first. However, if we translate the implication to
|
||||
using disjunction and negation, we get
|
||||
```
|
||||
(t <: false => N) | (t <: false) == (¬(t <: false) | n) | (t <: false)
|
||||
```
|
||||
|
||||
Considering the two cases
|
||||
```
|
||||
(1) t == false
|
||||
(2) t != false
|
||||
```
|
||||
we see that in (1)
|
||||
```
|
||||
(¬(t <: false) | n) | (t <: false) ==
|
||||
(¬(true) | n) | (true) ==
|
||||
true
|
||||
```
|
||||
and in (2)
|
||||
```
|
||||
(¬(t <: false) | n) | (t <: false) ==
|
||||
(¬(false) | n) | false ==
|
||||
(true | n) | false ==
|
||||
true
|
||||
```
|
||||
|
88
docs/about/interpret.md
Normal file
88
docs/about/interpret.md
Normal file
|
@ -0,0 +1,88 @@
|
|||
# interpretation of sappho
|
||||
|
||||
Different aspects of sappho interpreted.
|
||||
|
||||
## What is true?
|
||||
|
||||
Our "set interpretation" of types says `true` represents the full universe of
|
||||
"things".
|
||||
|
||||
What are these things?
|
||||
|
||||
For all intents and purposes, a programmer can look at them as the values of
|
||||
our language.
|
||||
|
||||
What does this mean in practical terms?
|
||||
|
||||
Well, it means something of type `true` is "a value".
|
||||
|
||||
What is "a value" then?
|
||||
|
||||
That's a good question. It can be anything really.
|
||||
|
||||
An integer?
|
||||
|
||||
Yep!
|
||||
|
||||
A function?
|
||||
|
||||
Yes, m'am!
|
||||
|
||||
A solution to the halting problem?
|
||||
|
||||
Well, yeah! But good luck constructing that.
|
||||
|
||||
A...
|
||||
|
||||
I think you get my point. A value can be anything from a simple integer to
|
||||
nuclear apocalypse. The thing is, from the point of view of our program, it
|
||||
means "we cannot really say anything here".
|
||||
|
||||
But couldn't that be dangerous?
|
||||
|
||||
Depends on what you mean by dangerous.
|
||||
|
||||
I mean, to be able to give everything a type?
|
||||
|
||||
Well, let me ask you this: do you like rat poison?
|
||||
|
||||
What? To eat?
|
||||
|
||||
Yeah!
|
||||
|
||||
Nooo, that'd be dangerous!
|
||||
|
||||
Yeah, exactly my point.
|
||||
|
||||
What?
|
||||
|
||||
You know what rat poison is obviously, despite it being dangerous?
|
||||
|
||||
Well, yeah...
|
||||
|
||||
Maybe you got it already, but my point is: rat poison is dangerous, but you
|
||||
still know about it, and its existance. So, something being dangerous does not
|
||||
mean you have this blank spot of knowledge that you just keep ignoring because
|
||||
of this perceived danger.
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
### interpretation of ⊢
|
||||
what is the interpretation of
|
||||
|
||||
γ ⊢ δ?
|
||||
|
||||
|
||||
given a concrete type k
|
||||
|
||||
conjunction of γ hold for k
|
||||
|
||||
then
|
||||
|
||||
disjunction of δ hold for k
|
||||
|
||||
|
||||
|
||||
|
Loading…
Add table
Add a link
Reference in a new issue