added trace pairs

This commit is contained in:
Ellen Arvidsson 2025-06-24 22:44:46 +02:00
parent 33b8a30610
commit 7d23372846

View file

@ -24,29 +24,36 @@ a ∈ opname
## sappho subtyping rules
```
```cmath
// trace pairs: none
---- [identity]
s, γ ⊢ s, δ
// trace pairs: none
---- [true-right]
γ ⊢ true, δ
// trace pairs: none
---- [false-left]
false, γ ⊢ δ
// trace pairs: none
s, t, γ ⊢ δ
---- [conj-left]
s & t, γ ⊢ δ
// trace pairs: none
γ ⊢ s, t, δ
---- [disj-right]
γ ⊢ s | t, δ
// trace pairs: none
s, γ ⊢ δ
t, γ ⊢ δ
---- [disj-left]
s | t, γ ⊢ δ
// trace pairs: none
γ ⊢ s, δ
γ ⊢ t, δ
---- [conj-right]
@ -54,24 +61,24 @@ s | t, γ ⊢ δ
// XXX
// remove s => t? always make progress
// trace pairs: none
s => t, s, t, γ ⊢ δ
---- [impl-left]
s => t, s, γ ⊢ δ
// discussion about implication below
// check how "normal sequent calculus handles this"
// trace pairs: none
s, γ ⊢ t, δ
---- [impl-right]
γ ⊢ s => t, δ
// box works as a kind of "forall" for concrete types
// trace pairs: none
box t, t, γ ⊢ δ
---- [box-left]
box t, γ ⊢ δ
// (.)-- filters the contexts.
// trace pairs: premise[0] -- conclusion
γ-- ⊢ t, δ--
---- [box-right]
γ ⊢ box t, δ
@ -82,6 +89,7 @@ box t, γ ⊢ δ
// to exclude typedefs like
// type A = A
// Or that our cycle detection excludes paths between "identical" states.
// trace pairs: none
γ ⊢ expand(a[t..]), δ
----
γ ⊢ a[t..], δ
@ -92,6 +100,7 @@ a[t..], γ ⊢ δ
// member types are filtered according to member name
// trace pairs: premise[0] -- conclusion
γ >> m ⊢ δ >> m
---- [member]
γ ⊢ δ
@ -99,11 +108,14 @@ a[t..], γ ⊢ δ
// foralls are unwrapped and variable substituted with fresh name
// i.e. we treat the bound variable nominally
// trace pairs: premise[1] -- conclusion
n fresh
γ [n] ⊢ δ [n]
---- [forall]
γ ⊢ δ
// 1 + n! premises
// trace pairs: i ∈ [1..(n! + 1)], premise[i] -- conclusion
c, γ* ⊢ a_1, ..., a_n
∀ I ⊆ {1, ..., n}.
c, γ* ⊢ { a_i | i ∈ I }, δ*
@ -113,7 +125,6 @@ c, γ* ⊢ a_1, ..., a_n
a_1 -> b_1, ..., a_n -> b_n, γ ⊢ c -> d, δ
```
### context operators
* box filtering
@ -136,6 +147,14 @@ a_1 -> b_1, ..., a_n -> b_n, γ ⊢ c -> d, δ
γ [n] otherwise
```
### trace pairs
Trace pairs are related to cyclic proofs. They identify the pairs of
`premise -- conclusion` that are *productive*, i.e. leads to some progress
making a cycle in the proof tree admissable as a cyclic proof of the nodes in
the cycle.
The trace pairs are described in the comments for each subtyping rule.
### Semantic function subtyping
*Here we try to give an intuitive explainer of how to reason about function